Kurzmitteilung / Short Communication

Heterometallische Zweikernkomplexe, I

Reaktive Zr(IV) - M(0)-Verbindungen (M = Cr, Mo, W) mit Diphenylphosphinocyclopentadienid-Brückenliganden

Wolfdieter A. Schenk* und Christine Labude

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 25. April 1989

Key Words: Binuclear complexes / Zirconium / Group VI metals

Heterometallic Binuclear Complexes, I. – Reactive Zr(IV)-M(0) Compounds (M = Cr, Mo, W) with Bridging Diphenylphosphinocyclopentadienide Ligands

Reaction of $ZrCl_2(C_5H_4PPh_2)_2$ (1) with labile complexes $M(CO)_3L_3$ (M = Cr, L = acetonitrile, M = Mo, W, L₃ = cycloheptatriene) gives the binuclear compounds $ZrCl(\mu-Cl)_{\mu-C_5H_4PPh_2}M(CO)_3$ [M = Cr (2), Mo (3), W (4)]. The Cl bridge is readily cleaved by ligands such as CO, MeCN, or $P(OMe)_3$.

Trägergestützte Katalysatoren wie Rh–Zn/SiO₂ oder Rh/ZrO₂ besitzen aufgrund starker Metall–Träger-Wechselwirkungen eine hohe Selektivität für Oxoprodukte¹⁾. Heterometallische Zweikernkomplexe, die ein hartes Zentrum wie Ti(IV), Zr(IV) oder Nb(V) neben einem zweiten Metall in einer niederen Oxidationsstufe enthalten, gelten als molekulare Modelle solcher heterogener Katalysatoren²⁾. Die Diphenylphosphinocyclopentadienyl-Gruppe hat sich als Stützligand zur Verklammerung von Ti(IV) oder Zr(IV) mit den Elementen Cr, Mo ^{3,4)}, Mn ⁵⁾, Fe, Co ⁶⁾ und Pt ⁷⁾ besonders bewährt. In den zitierten Fällen sind aber beide Metallzentren so weit abgesättigt, daß eine Anlagerung zusätzlicher Liganden nicht ohne weiteres gelingt.

Wir berichten hier über Zr(IV)/M(0)-Komplexe (M=Cr, Mo, W), die zusätzlich zu zwei verklammernden $C_5H_4PPh_2$ -Liganden noch eine leicht zu öffnende Cl-Brücke enthalten und zeigen, daß diese Verbindungen schon bei Raumtemperatur rasch Lewis-Basen addieren. Setzt man $ZrCl_2(C_5H_4PPh_2)_2$ (1)⁴⁰ nach Gl. 1 mit reaktiven Tricarbonylmetall-Komplexen der 6. Nebengruppe um, dann beobachtet man für M=Cr, Mo einen raschen Farbumschlag, für M=W kann die Reaktion mit einer katalytischen Menge Cobaltocen beschleunigt werden ⁸⁾. Die Produkte 2-4 fallen bei der Aufarbeitung als tiefviolette Kristallpulver an.

$$ZrCl_2(C_5H_cPPh_2)_2 + M(CO)_3L_3$$

The second s

Zusammensetzung und Konstitution der neuen Verbindungen gehen aus Elementaranalysen, spektroskopischen Daten (Tab. 1) und Folgereaktionen hervor. Ein tieffeldverschobenes Singulett im ³¹P-NMR-Spektrum (mit ¹⁸³W-Satelliten bei 4) zeigt, daß beide Phosphor-Kerne in äquivalenten Positionen an das Metall(0)-Zentrum koordiniert sind. Die faciale Anordnung der drei CO-Liganden läßt sich aus den drei etwa gleich intensiven CO-Valenzschwingungsabsorptionen im Infrarotspektrum ableiten. Der bei $\tilde{v} =$ 310 cm⁻¹ auftretenden Zr-Cl-Valenzschwingung von 1 entsprechen im Zweikernkomplex 3 zwei Banden bei $\tilde{v} = 320$ und 280 cm⁻¹, ein deutliches Indiz dafür, daß sich eines der beiden Chlor-Atome in einer Brückenposition befindet. Die tiefe Farbe der Verbindungen, die im übrigen auch bei Thiolat-verbrückten Zweikernkomplexen dieser Elemente beobachtet wird⁹⁾, rührt von einem $M(0) \rightarrow Zr(IV)$ -charge-transfer-Übergang her, der auf eine – sicherlich sehr schwache - Wechselwirkung zwischen beiden Metallzentren hindeutet.

Tab. 1. Spektroskopische Daten der Zweikernkomplexe ZrMCl₂- $(\mu$ -C₅H₄PPh₂)₂(CO)₃L

	M Cr	L	∇(CO) ^{a)} [cm ⁻¹]				δ(³¹ P) ^{b)} (ppm)
			1931 (s)	1850 (s)	1796 (s)	_	41.7
3	Mo		1937 (s)	1853 (s)	1826 (s)		25.1
4	W		1931 (s)	1840 (s)	1800 (s)		11.6 ^{c)}
8	Cr	CO	2003 (m)	1920 (s)	1895 (s)	1880 (m)	51.8
9 d)	Mo	CO	2015 (m)	1925 (s)	1908 (s)	1880 (m)	32.2
10	W	CO	2016 (m)	1918 (s)	1896 (s)	1875 (m)	16.8
11	Mo	P(OMe) ₃	1953 (s)	1873 (s)	1857 (s)		153.8 (t) ^{e)} 30.9 (d)
12	W	P(OMe) ₃	1952 (s)	1870 (s)	1850 (s)		132.1 (t) ^{f.g} 17.1 (d) ^h

 $^{^{}a)}$ In Nujol. $^{-b)}$ In CH2Cl2/CD2Cl2. $^{-c)}$ 1 J(W-P) = 242 Hz. $^{-d)}$ Lit. $^{4)}$: V(CO) = 2022 (m), 1930 (sh), 1910 (s) cm $^{-1}$ (CH2Cl2); δ = 30.9 ppm. $^{-c)}$ 2 J(P-P) = 35 Hz. $^{-0}$ 2 J(P-P) = 30 Hz. $^{-8)}$ J(W-P) = 380 Hz. $^{-h)}$ J(W-P) = 276 Hz.

Wie erwartet läßt sich die Chlor-Brücke leicht durch potentielle Liganden öffnen (Gl. 2). In Acetonitril lösen sich 2-4 mit einem sofortigen Farbwechsel nach gelb. Diese Reaktion ist reversibel, beim Abziehen des Lösungsmittels erhält man die Edukte 2-4 wieder zurück. CO hingegen wird irreversibel aufgenommen. Von den Tetracarbonylen 8-10 war 9 schon früher aus Tetracarbo-

nyl(norbornadien)molybdän und 1 synthetisiert worden⁴⁾, auf diesem Wege ist auch 8 erhältlich (siehe Exp. Teil). Trimethylphosphit wird ebenfalls glatt addiert, die spektroskopischen Daten von 11 und 12 zeigen, daß auch bei dieser Reaktion die faciale Anordnung der drei CO-Gruppen am Metall(0)-Zentrum nicht verändert wird.

Die hier mitgeteilten Ergebnisse demonstrieren einen Weg, kleine Substratmoleküle unter milden Bedingungen an heterometallische Zweikernkomplexe zu addieren. Zusammen mit der Möglichkeit, durch Halogenid-Abstraktion am Zirconium ein zweites Lewis-saures Zentrum zu erzeugen ¹⁰, eröffnet sich ein attraktiver Weg zur Aktivierung polarer Moleküle.

Experimenteller Teil

Alle Reaktionen wurden in gereinigten Lösungsmitteln unter Stickstoff durchgeführt. - ³¹P-NMR-Spektren: Jeol FX 90 Q, δ in ppm gegen H₃PO₄ (extern). – IR-Spektren: Perkin-Elmer 283.

 $ZrCl(\mu-Cl)(\mu-C_3H_4PPh_2)_2Cr(CO)_3$ (2): Eine Lösung von 0.33 g (0.50 mmol) 1⁴⁾ in 5 ml THF wird bei 0°C mit 0.15 g (0.58 mmol) Cr(CO)₃(NCMe)₃ versetzt und bei dieser Temperatur 0.5 h gerührt. Danach engt man i. Vak. auf 2 ml ein und fällt das Produkt mit Hexan; Ausb. 0.28 g (70%) bräunlich-violettes Kristallpulver, Zers.-P. 180°C.

$$C_{37}H_{28}Cl_2CrO_3P_2Zr$$
 (796.7) Ber. C 55.78 H 3.54 Gef. C 53.13 H 3.82

 $ZrCl(\mu-Cl)(\mu-C_5H_4PPh_2)_2Mo(CO)_3$ (3): Eine Lösung von 1.25 g (1.89 mmol) 1^4) in 7 ml Dichlormethan wird mit 0.52 g (1.91 mmol) $Mo(CO)_3C_7H_8$ versetzt, dabei tritt sofort eine Farbvertiefung ein, und bereits nach wenigen Minuten fallen tiefviolette Kristalle aus. Nach 0.5 h wird das Produkt durch Zugabe von 3 ml Hexan vollständig gefällt; Ausb. 1.37 g (86%) violettes Kristallpulver, Schmp. 195°C (Zers.).

 $ZrCl(\mu-Cl)(\mu-C_3H_4PPh_2)_2W(CO)_3$. (4): Eine Lösung von 0.54 g (0.82 mmol) 1^{49} und 0.30 g (0.83 mmol) $W(CO)_3C_7H_8$ in 8 ml Toluol wird mit einer Spatelspitze Cobaltocen versetzt und bei $20^{\circ}C$ 1 h gerührt. Dann engt man auf 3 ml ein und fällt das Produkt durch Zugabe von 3 ml Hexan; Ausb. 0.58 g (76%) violettes Kristall-pulver, Schmp. $210^{\circ}C$ (Zers.).

$$C_{37}H_{28}Cl_2O_3P_2WZr$$
 (928.5) Ber. C 47.86 H 3.04 Gef. C 47.46 H 3.23

 $ZrCl_2(\mu-C_5H_4PPh_2)_2Cr(CO)_4$ (8): Durch eine Lösung von 0.15 g (0.19 mmol) 2 in 7 ml Dichlormethan wird bei 20°C ein schwacher CO-Strom geleitet. Die ursprünglich braun-violette Lösung wird binnen 1 h gelb, man engt auf 2 ml ein und fällt das Produkt mit

2 ml Hexan; Ausb. 0.11 g (71%) hellgelbes Kristallpulver, Zers.-P. 212°C.

Bei der Umsetzung äquimolarer Mengen von 1 und Tetracarbonyl(norbornadien)chrom in Toluol erhält man nach analoger Aufarbeitung ein ebenfalls hellgelbes Produkt, das nach Spektrenvergleich (IR, ³¹P-NMR) mit 8 identisch ist.

 $ZrCl_2(\mu-C_5H_4PPh_2)_2Mo(CO)_4$ (9): Durchführung und Aufarbeitung erfolgt wie für 8 beschrieben; Ausb. 80% hellgelbes Kristallpulver, Schmp. 215°C (Zers.). Das Produkt ist nach Spektrenvergleich (siehe Tab. 1) identisch mit authentischem 9⁴.

 $ZrCl_2(\mu-C_5H_4PPh_2)_2W(CO)_4$ (10): Durchführung wie für 8 beschrieben, Reaktionsdauer jedoch 24 h; Ausb. 74% hellgelbes Kristallpulver, Schmp. 220°C (Zers.).

$$C_{38}H_{28}Cl_2O_4P_2WZr$$
 (956.6) Ber. C 47.71 H 2.95 Gef. C 45.92 H 3.02

 $ZrCl_2(\mu-C_5H_4PPh_2)_2Mo(CO)_3[P(OMe)_3]$ (11): Eine Lösung von 0.30 g (0.36 mmol) 3 in 8 ml Dichlormethan wird mit 0.05 ml (0.42 mmol) Trimethylphosphit versetzt, dabei tritt ein Farbumschlag von Violett nach Gelbbraun ein. Man engt auf 2 ml ein und fällt das Produkt mit 3 ml Hexan; Ausb. 0.26 g (75%) beiges Kristallpulver, Schmp. 147°C (Zers.).

 $ZrCl_2(\mu-C_5H_4PPh_2)_2W(CO)_3[P(OMe)_3]$ (12): Durchführung wie für 11 beschrieben; Ausb. 63% beiges Kristallpulver, Schmp. 158°C (Zers.).

CAS-Registry-Nummern

1: 100898-54-2 / 2: 121173-78-2 / 3: 121173-79-3 / 4: 121173-80-6 / 5: 121173-81-7 / 6: 121173-82-8 / 7: 121173-83-9 / 8: 121173-84-0 / 9: 100898-55-3 / 10: 121173-85-1 / 11: 121173-86-2 / 12: 121173-87-3 / $Cr(CO)_3(NCMe)_3$: 16800-46-7 / $Mo(CO)_3(cycloheptatrien)$: 12125-77-8 / $W(CO)_3(cycloheptatrien)$: 12128-81-3 / $Cr(CO)_4(norbornadien)$: 12146-36-0 / $P(OMe)_3$: 121-45-9

¹⁾ M. Ichikawa, A. J. Lang, D. F. Shriver, W. M. H. Sachtler, J. Am. Chem. Soc. 107 (1985) 7216; G. S. Ferguson, P. T. Wolczanski, ibid. 108 (1986) 8293, und dort zit. Literatur.

czanski, *ibid.* 108 (1986) 8293, und dort zit. Literatur.

2) R. M. Bullock, C. P. Casey, *Acc. Chem. Res.* 20 (1987) 167; F. Ozawa, J. W. Park, P. B. Mackenzie, W. P. Schaefer, L. M. Henling, R. H. Grubbs, *J. Am. Chem. Soc.* 111 (1989) 1319.

³⁾ J. C. Leblanc, C. Moise, A. Maisonnat, R. Poilblanc, C. Charrier, F. Mathey, J. Organomet. Chem. 231 (1982) C43.

⁴⁾ W. Tikkanen, Y. Fujita, J. L. Petersen, Organometallics 5 (1986) 888.

⁵⁾ M. D. Rausch, B. H. Edwards, R. D. Rogers, J. L. Atwood, J. Am. Chem. Soc. 105 (1983) 3882.

6) C. P. Casey, F. Nief, Organometallics 4 (1985) 1218.

⁷⁾ G. K. Anderson, M. Lin, Inorg. Chim. Acta 142 (1988) 7; Organometallics 7 (1988) 2285.

8) Hierfür dürfte ein Elektronentransfer-Mechanismus verantwortlich sein: D. Astruc, Chem. Rev. 88 (1988) 1189; M. C. Baird, ibid. 88 (1988) 1217.

⁹⁾ H. Köpf, K. H. Räthlein, Angew. Chem. 81 (1969) 1000; Angew. Chem. Int. Ed. Engl. 8 (1969) 980; G. R. Davies, B. T. Kilbourn, J. Chem. Soc. A, 1971, 87; C. J. Ruffing, T. B. Rauchfuss, Organometallics 4 (1985) 524.

¹⁰⁾ R. F. Jordan, S. F. Echols, *Inorg. Chem.* 26 (1987) 383, und dort zit. Literatur.

[135/89]